Using Least Squares Support Vector Machines for Frequency Estimation

نویسندگان

  • Xiaoyun Teng
  • Xiaoyi Zhang
  • Hongyi Yu
چکیده

Frequency estimation is transformed to a pattern recognition problem, and a least squares support vector machine (LS-SVM) estimator is derived. The estimator can work efficiently without the need of statistics knowledge of the observations, and the estimation performance is insensitive to the carrier phase. Simulation results are presented showing that proposed estimators offer better performance than traditional Maximum Likelihood (ML) estimator at low SNR, since classification-based method does not have the threshold effect of nonlinear estimation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expected shortfall estimation using kernel machines †

In this paper we study four kernel machines for estimating expected shortfall, which are constructed through combinations of support vector quantile regression (SVQR), restricted SVQR (RSVQR), least squares support vector machine (LS-SVM) and support vector expectile regression (SVER). These kernel machines have obvious advantages such that they achieve nonlinear model but they do not require t...

متن کامل

Least Squares Support Vector Machines and Primal Space Estimation

In this paper a methodology for estimation in kernel-induced feature spaces is presented, making a link between the primal-dual formulation of Least Squares Support Vector Machines (LS-SVM) and classical statistical inference techniques in order to perform linear regression in primal space. This is done by computing a finite dimensional approximation of the kernel-induced feature space mapping ...

متن کامل

Application of Artificial Neural Networks and Support Vector Machines for carbonate pores size estimation from 3D seismic data

This paper proposes a method for the prediction of pore size values in hydrocarbon reservoirs using 3D seismic data. To this end, an actual carbonate oil field in the south-western part ofIranwas selected. Taking real geological conditions into account, different models of reservoir were constructed for a range of viable pore size values.  Seismic surveying was performed next on these models. F...

متن کامل

Least squares support vector machines for direction of arrival estimation with error control and validation

This paper presents a multiclass, multilabel implementation of Least Squares Support Vector Machines (LS-SVM) for direction of arrival (DOA) estimation in a CDMA system. For any estimation or classification system the algorithm’s capabilities and performance must be evaluated. Specifically, for classification algorithms a high confidence level must exist along with a technique to automatically ...

متن کامل

Identification of MIMO Hammerstein models using least squares support vector machines

This paper studies a method for the identification of Hammerstein models based on Least Squares Support Vector Machines (LS-SVMs). The technique allows for the determination of the memoryless static nonlinearity as well as the estimation of the model parameters of the dynamic ARX part. The SISO as well as the MIMO identification cases are elaborated. The technique can lead to significant improv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJCNS

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2010